B. I. T. SINDRI

B. Tech. 2nd Semester, Mid Semester Examination: 2019

SUBJECT: PHYSICS-II (Introduction to Quantum Mechanics for Engineers) Branch: - EE,CSE & IT)

TIME: 1.5 HOUR

F.M. 20

Answer five Questions. Question No. 1 is compulsory

All questions are of equal marks

- 1. Answer any four questions
- (I) In Compton scattering, the increase in wavelength depends on the:
- (a) wavelength of incident radiation (b) nature of scatterer
- (c) angle of scattering
- (d) none of the above.
- (II). Electrons show the wave behavior as:
- (a) they get diffracted by the crystal (b) they ionize the gas
- (c)they are deflected by electric field (d) they are deflected by magnetic field
- (III) The correct relation is:

(a)
$$\Delta x.\Delta p < \frac{h}{2\pi}$$

(b)
$$\Delta x.\Delta p \approx \frac{h}{2\pi}$$

(c)
$$\Delta x. \Delta v \approx \frac{h}{2\pi}$$

(d)
$$\Delta E.\Delta \varphi \approx \frac{h}{2\pi}$$
.

- (IV). Heisenberg's uncertainty principle:
- (a) Establishes the Bohr's orbital concept (b) establishes the existence of electron inside the nucleus
- (c) is not observable for the macroscopic objects (d) does not agree with the de -Broglie hypothesis
- (V). The correct relation is:

(a)
$$v_g = v_p - \lambda \frac{dv_p}{d\lambda}$$

(b)
$$v_p = v_g - \lambda \frac{dv_g}{d\lambda}$$

(c)
$$v_{\theta} = v_p + \lambda \frac{dv_p}{d\lambda}$$

(d)
$$v_p = v_g - \frac{1}{\lambda} \frac{dv_p}{d\lambda}$$

- (VI). the quantity $|\psi|^2$ represents the:
- (a) Probability density

(b) charge density

(c) energy density

(d) intensity of the wave.

Write down Schrodinger's wave equation for a particle in a box. Solve it to obtain Eigen functions and show that the Eigen values are discrete.

- ∠2.(a) What is Compton effect? Give its physical significance. How does it support the photon nature of light?
 - (b) Derive the relation giving the change of wavelength of the scattered photon when it is scattered by an electron.
- 3.(a) Explain the wave particle duality of matter and obtain an expression for the de-Broglie wavelength.
 - (b) Describe Davisson and Germer's experiment. How does it prove the wave nature of particle?
- 4. (a) What is meant by wave packet? Differentiate between the phase velocity and the group velocity.

 Show that the velocity of a moving material particle is equivalent to the velocity of wave packet.
 - (b) Show that in a non-dispersive medium, the group velocity and the phase velocity are equal.
- _5. (a)Discuss Heisenberg's uncertainty principle and explain its consequences with examples.
 - (b) Explain the uncertainty principle from the phenomenon of diffraction at a single slit and gamma ray microscope.
- $oldsymbol{oldsymbol{\phi}}$ 6.(a)Establish the time independent Schrodinger's wave equation. Give the physical significance of the function $oldsymbol{\psi}$
 - (b) What is an operator? Write the operators associated with energy and momentum.
- √ 7. The potential function for a certain particle moving along positive detection of X-axis is represented as

$$V(x) = 0 \text{ for } x<0$$

=
$$V_0$$
 for $x \ge 0$.

Calculate the transmittance and reflectance at the potential discontinuity and show that R+T =1.